Research articles in DNA nanotechnology
Counterions influence the isothermal self-assembly of DNA nanostructures
A Rodriguez, BR Madhanagopal, K Sarkar, Z Nowzari, J Mathivanan, H Talbot, A Patel, V Morya, K Halvorsen, S Vangaveti, JA Berglund & AR Chandrasekaran*
Science Advances, 11: eadu7366 (2025). [PDF]
Related press release and media coverage:
UAlbany News: UAlbany researchers unlock new capabilities in DNA nanostructure self-assembly.
EurekAlert: UAlbany researchers unlock new capabilities in DNA nanostructure self-assembly.
Phys.org: New capabilities in DNA nanostructure self-assembly eliminate need for extreme heating and controlled cooling.
Genetic Engineering & Biotechnology News: DNA nanostructures that form without extreme heat could boost drug delivery, diagnostics.
Bioengineer.org: UAlbany researchers discover innovative advances in DNA nanostructure self-assembly.
Tuning the stability of DNA tetrahedra with base-stacking interactions.
Jibin Abraham Punnoose, Dadrian Cole, AR Chandrasekaran & K Halvorsen
Nano Letters, 25: 3605 (2024). [PDF]
Differential electrophoretic mobility of synthetic DNA motifs and duplex DNA in various counter ions.
A Patel, L Punnoose & AR Chandrasekaran*
Chemical Communications, 60: 12706 (2024). [PDF]
Switchback RNA.
BR Madhanagopal, H Talbot, A Rodriguez & AR Chandrasekaran*
ACS Chemical Biology, 19: 2394 (2024). [PDF]
The unusual structural properties and potential biological relevance of switchback DNA.
BR Madhanagopal, H Talbot, A Rodriguez, JM Louis, H Zeghal, S Vangaveti, K Reddy & AR Chandrasekaran*
Nature Communications, 15: 6636 (2024). [PDF]
Related press release and media coverage: here.
UAlbany News: The shape of molecules to come: A Q&A on designing DNA nanostructures for biomedical applications.
AzoNano: UAlbany researchers investigate unique properties of switchback DNA for nanotechnology innovations.
American Society for Biochemistry and Molecular Biology: The shape of molecules to come.
Phys.org: The shape of molecules to come: A Q&A on designing DNA nanostructures for biomedical applications.
Newswise: The shape of molecules to come: A Q&A on designing DNA nanostructures for biomedical applications.
Barium concentration-dependent anomalous electrophoresis of synthetic DNA motifs.
BR Madhanagopal, A Rodriguez, M Cordones & AR Chandrasekaran*
ACS Applied Bio Materials, 7: 2704 (2024). [PDF]
A DNA rotary nanodevice operated by enzyme-initiated strand resetting.
AR Chandrasekaran*
Chemical Communications, 60: 534 (2024). [PDF]
Fluorometric determination of DNA nanostructure biostability.
H Talbot, BR Madhanagopal, A Hayden, K Halvorsen & AR Chandrasekaran*
ACS Applied Bio Materials, 6: 3074 (2023). [PDF]
The role of size in biostability of DNA tetrahedra.
J Vilcapoma, A Patel, AR Chandrasekaran* & Ken Halvorsen*
Chemical Communications, 59: 5083 (2023). [PDF]
Toehold clipping: A mechanism for remote control of DNA strand displacement.
H Faheem, J Mathivanan, H Talbot, H Zeghal, S Vangaveti, J Sheng, AA Chen & AR Chandrasekaran*
Nucleic Acids Research, 51: 4055 (2023). [PDF]
Encoding, decoding, and rendering information in DNA nanoswitch libraries.
H Talbot, K Halvorsen & AR Chandrasekaran*
ACS Synthetic Biology, 12: 978 (2023). [PDF]
High-throughput single-molecule quantification of individual base stacking energies in nucleic acids.
JA Punnoose, KJ Thomas, AR Chandrasekaran, J Vilcapoma, A Hayden, T Banco & K Halvorsen
Nature Communications, 14: 631 (2023). [PDF]
Sequence-selective purification of biological RNAs using DNA nanoswitches.
L Zhou, A Hayden, AR Chandrasekaran, J Vilcapoma, C Cavaliere, P Dey, S Mao, J Sheng, BK Dey, P Rangan & K Halvorsen
Cell Reports Methods, 1: 100126 (2021). [PDF]
A mini DNA-RNA hybrid origami nanobrick.
L Zhou, AR Chandrasekaran, M Yan, VA Valsangkar, JI Feldblyum, J Sheng & K Halvorsen
Nanoscale Advances, 3: 4048 (2021). [PDF]
Orthogonal control of DNA nanoswitches with mixed physical and biochemical cues.
NT Forrest, J Vilcapoma, K Alejos, K Halvorsen* & AR Chandrasekaran*
Biochemistry, 60: 250 (2021). [PDF]
Ribonuclease-responsive DNA nanoswitches.
AR Chandrasekaran,* R Trivedi & K Halvorsen*
Cell Reports Physical Sciences, 1: 100117 (2020). [PDF]
Exceptional nuclease resistance of paranemic crossover (PX) DNA and crossover-dependent biostability of DNA motifs.
AR Chandrasekaran,* J Vilcapoma, P Dey, SW Wong-Deyrup, BK Dey & K Halvorsen*
Journal of the American Chemical Society (JACS), 142: 6814 (2020). [PDF]
Click and photo-release dual-functional nucleic acid nanostructures.
VA Valsangkar, AR Chandrasekaran,* L Zhou, S Mao, GW Lee, M Kizer, X Wang, K Halvorsen & J Sheng*
Chemical Communications, 55: 9709 (2019). [PDF]
Integration of a photocleavable element into DNA nanoswitches.
AR Chandrasekaran,* JA Punnoose, V Valsangkar, J Sheng & K Halvorsen*
Chemical Communications, 55: 6587 (2019). [PDF]
Controlled disassembly of a DNA tetrahedron using strand displacement.
AR Chandrasekaran* & K Halvorsen*
Nanoscale Advances, 1: 969 (2019). [PDF]
Reconfigurable DNA nanoswitches for graphical readout of molecular signals.
AR Chandrasekaran*
ChemBioChem 19: 1018 (2018). [PDF]
Addressable configurations of DNA nanostructures for rewritable memory.
AR Chandrasekaran,* O Levchenko, D Patel, M MacIsaac & K Halvorsen*
Nucleic Acids Research, 45: 11459 (2017). [PDF]
Shear dependent LC purification of an engineered DNA nanoswitch and implications for DNA origami.
K Halvorsen, M Kizer, X Wang, AR Chandrasekaran & M Basanta-Sanchez
Analytical Chemistry, 89: 5673 (2017). [PDF]
Click-based functionalization of a 2'-O-propargyl-modified branched DNA nanostructure.
V Valsangkar, AR Chandrasekaran,^ R Wang, P Haruehanroengra, O Levchenko, K Halvorsen & J Sheng
Journal of Materials Chemistry B, 5: 2074 (2017). [PDF]